Design Shear Strengths for Mine Spoil

John Simmons
The University of Newcastle
Sherwood Geotechnical and Research Services
Prior State of Practice

BMA Coal Spoil Categorisation Process (Simmons and McManus, 2004)

- Shear Stress at full yield (τ)
- Unsaturated
- Saturated
- Remoulded

Saturated state is possibly reversible
Remoulded state is NOT reversible

Effective Normal Stress (σ')
Prior State of Practice

BMA Coal Spoil Categorisation Process (Simmons and McManus, 2004)
Prior State of Practice

BMA Coal Spoil Categorisation Process (Simmons and McManus, 2004)

<table>
<thead>
<tr>
<th>Category</th>
<th>(a) Unsaturated</th>
<th>(b) Saturated</th>
<th>(c) Basal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γ (kN/m³)</td>
<td>c' (kPa)</td>
<td>ϕ' (deg)</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Centre for Geotechnical Materials & Modelling

BOHOGS 9 May 2017 Peak Downs Mine
... and a Quick Reminder about Origins

Prior State of Practice

BMA Coal Spoil Categorisation Process (Simmons and McManus, 2004)

FOS = 1.19

Non-vertical slices: Sarma Method

“ill-defined zone”
Prior State of Practice

BMA Coal Spoil Categorisation Process (Simmons and McManus, 2004)

FOS = 1.13

Non-vertical slices: Sarma Method

Dump stability is controlled by strength of spoil that becomes saturated or remoulded

"ill-defined zone"
Spoil Materials Tested with LDSM

1. Typical 2yr Exposed Fresh Permian (MAC CD) [Cat. 2.5]
2. Typical 1mo Exposed Fresh Permian (MAC RX) [Cat. 2.5]
3. “Vintage” (10yr+) Exposed Fine-Grained Permian (MAC VP) [Cat. 2]
4. Fresh Permian Non-Slaking (ROL FP-NS) [Cat. 2]
5. Fresh Permian Slaking (ROL FP-S) [Cat. 2]
6. Weathered Tertiary Volcanics (ROL WTV) [Cat. 1]
C20019: Unit Weights from LDSM

UNSATURATED UNIT WEIGHT IS HIGHER THAN BMAC PARAMETERS

![Graph showing the relationship between saturated unit weight (γ_b) and effective stress (σ'). The graph compares different datasets including MAC CD & RX, MAC VP, ROL FP-NS, ROL FP-S, and ROL WTV. The data points and lines indicate a general trend where γ_b increases as σ' increases.](image)
SATURATED UNIT WEIGHT IS HIGHER THAN BMAC PARAMETERS
C20019: MAC CD Unsaturated

Mt Arthur Coal CD Spoil Unsaturated

- LDSM Tests
- BMAC Cat.3U
- BMAC Cat.2.5U
- BMAC Cat.2U

Centre for Geotechnical Materials & Modelling

BOHOGS 9 May 2017 Peak Downs Mine
C20019: MAC RX Unsaturated

Mt Arthur Coal RX Spoil Unsaturated

Peak shear stress (kPa) vs Normal stress (kPa)

- LDSM Tests
- BMAC Cat.3U
- BMAC Cat.2.5U
- BMAC Cat.2U

- 453, 295
- 1522, 857
- 2560, 1636
- 3610, 2531
- 4605, 2973

Centre for Geotechnical Materials & Modelling
BOHOGS 9 May 2017 Peak Downs Mine
Mt Arthur Coal Vintage Permian Spoil Inundated

- LDSM Tests
- BMAC Cat.2S
- BMAC Cat.1.5S
- BMAC Cat.1S

Peak shear stress (kPa) vs. Normal Stress (kPa)

Centre for Geotechnical Materials & Modelling
BOHOGS 9 May 2017 Peak Downs Mine
C20019: ROL FP-NS Unsaturated

Rolleston Fresh Permian Non-Slaking Spoil Unsaturated

Peak shear stress (kPa)

Normal Stress (kPa)

LDSM Tests
BMAC Cat.3U
BMAC Cat.2.5U
BMAC Cat.2U

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Centre for Geotechnical Materials & Modelling
BOHOGS 9 May 2017 Peak Downs Mine
C20019: ROL FP-NS Inundated

Rolleston Fresh Permian Non-Slaking Spoil Inundated

![Graph showing the relationship between Normal Stress (kPa) and Peak Shear Stress (kPa). The graph includes data points and lines for LDSM Tests, BMAC Cat.3S, BMAC Cat.2.5S, and BMAC Cat.2S.]

Centre for Geotechnical Materials & Modelling
BOHOGS 9 May 2017 Peak Downs Mine
C20019: ROL FP-S Unsaturated

Rolleston Fresh Permian Slaking Spoil Unsaturated

- LDSM Tests
- BMAC Cat.2U
- BMAC Cat.1.5U
- BMAC Cat.1U

Peak shear stress (kPa) vs Normal Stress (kPa)

Centre for Geotechnical Materials & Modelling
BOHOGS 9 May 2017 Peak Downs Mine
C20019: ROL FP-S Inundated

Rolleston Fresh Permian Slaking Spoil Inundated

- LDSM Tests
- BMAC Cat.2S
- BMAC Cat.1.5S
- BMAC Cat.1S

Centre for Geotechnical Materials & Modelling
BOHOGS 9 May 2017 Peak Downs Mine
C20019: ROL WTV Unsaturated

Rolleston Weathered Tertiary Volcanics Spoil Unsaturated

- LDSM Tests
- BMAC Cat.2U
- BMAC Cat.1.5U
- BMAC Cat.1U

Centre for Geotechnical Materials & Modelling
BOHOGS 9 May 2017 Peak Downs Mine
C20019: ROL WTV Inundated

Rolleston Weathered Tertiary Volcanics Spoil Inundated

- LDSM Tests
- BMAC Cat.2S
- BMAC Cat.1.5S
- BMAC Cat.1S

Centre for Geotechnical Materials & Modelling
BOHOGS 9 May 2017 Peak Downs Mine
Summary Characteristics MAC Spoils

MAC CD & RX
lithic sandstone/siltstone, alluvial floodplain, UCS 5-25+ MPa, degradation on exposure, low slake/swell/dispersion, LL~28%

_Fits with BMAC Categorisation process, linear envelope but possible strength enhancement for \(\sigma'_n > 2500 \text{ kPa} \)_

MAC VP
carb mudstone, alluvial offbank, UCS 5-10 MPa, degradation on exposure, low slake, high swell, low dispersion, LL~38%

Unsaturated fits with BMAC Cats, but Saturated does not follow, and difference is attributable to clay content in rock
Summary Characteristics ROL Spoils

ROL FP-NS & FP-S
lithic sandstone/siltstone, alluvial floodplain, UCS 2-5 MPa, degradation on exposure, FP-S breaks down readily and is much more slake-prone, LL~44%

Unsat FP-NS fits, but Unsat FP-S does not. Saturated does not fit: the huge difference is attributable to particle strength/friability

ROL WTV
weathered Tertiary volcanics: sesquioxide clays, UCS 0.5-2 MPa, shrink-swell fissures but no degradation on exposure, high slake, high swell, low dispersion, LL~57%

Doesn’t fit BMAC Categorisation process but was supposed-to
Models for Spoil Moisture Conditions

Simmons & McManus (2004): conceptual models based on limited drilling and observations going back to 1970’s UDC-CSIRO research at Goonyella & South Blackwater

Phreatic Surface height ≤ 5m above floor of dump

Perched Water Tables of very limited height on old running surfaces
Smith et al 1995: Spoil Moisture Conditions

Hydrostratigraphic Model:
- Spoil texture
- Dump structure
- Hydrological factors

Spoil texture:
- “soil-like”/“rock-like”? (channelised flow)
- cohesionless/cohesive?
- slake-prone

Developed as part of BC *Interim* Waste Dump Design Guidelines
Wunsch et al 1996: Spoil Moisture Conditions

Hydrogeological Model:
- based on observed structure formed by mining sequence
- investigated with wells and insitu flow tests
- also examined spoil settlement over time

Kentucky: rehabilitated landform built from surcharged coal mine spoil

DEEP INFILTRATION BASIN

final landform surface
haulroad & truck dump
dragline dump
dragline bench & pad
cast carpet

“hollow” fill

SHALE

BOHOGS 9 May 2017 Peak Downs Mine
Three-Zone Moisture Condition Model

- **Upper Zone:** can gain some water from rainfall, and will lose water to evaporation and percolation, ≤ 20% infiltrates
- **Middle Zone:** transmits water, undergoes minimal changes
- **Lower Zone:** a phreatic aquifer with a water table, a capillary zone, and an unsaturated zone
Lower Zone:
Deep, Structured, with a Saturated Base

- Exists only when basal spoil is saturated by water re-entering the mine void after spoil dumping
- Saturated spoil state at rock floor contact, with a phreatic surface and positive water pressure
- Capillary zone above phreatic surface: saturated but with negative water pressure (suction)
- Unsaturated transition zone with suction increase and degree of saturation decrease with height
- Capillary zone thickness varies:
 - ≤ 0.3m (Cats.3-4, “rock-like”)
 - 0.3m – 1m (Cat.2, “soil-like”, non-cohesive)
 - 1m – 10m (Cat.1, “soil-like”, cohesive).
Summary and Conclusions

BMAC Strengths may be reliably used for spoils that satisfy additional criteria:

- Rock material strengths: UCS ≥ 5 MPa
- Plasticity limitations: LL < 35%
- Slaking behaviour limited: Coffey Test low slake/swell, low-moderate dispersion

No compelling evidence for strength envelope curvature, and compelling evidence for material transitions under higher dump stresses, requires cutoff at c’=0, φ’=45°

C20019 Report: recommendations for stability analysis

BMAC treatment of groundwater and stability analysis methodology remain valid but still require care and thought.
Acknowledgements

• Funding support by ACARP for Project C20019
• Leonie Bradfield
• Phil Dombkins and other UoN Technical Staff
• In-kind support from BMA Coal Geotechnical Services
• In-kind support from Mount Arthur, Rolleston, Blackwater, Broadmeadow Mines
• John Brett

... and a final Comment: